Serre duality for noncommutative projective schemes

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Reconstructing Projective Schemes from Serre Subcategories

Given a positively graded commutative coherent ring A = ⊕j>0Aj , finitely generated as an A0-algebra, a bijection between the tensor Serre subcategories of qgrA and the set of all subsets Y ⊆ Proj A of the form Y =

متن کامل

Math 233a Final Presentation: Serre Duality for Projective Spaces

Let V be a vector space of dimension n+1 over a field k, and consider the scheme X = PV ∼= Pk ∼= Proj(k[x0, . . . , xn]). Consider F a quasi-coherent sheaf over X. We can examine its Cech cohomology which coincides with its sheaf (nonetale) cohomology because X is Noetherian and separated (cf. Hartshorne, ch. III theorem 4.5.). Particularly, H(X,F) ∼= Γ(F , X). However Γ(F , X) ∼= HomX(OX ,F). ...

متن کامل

Hexagons for Noncommutative Serre Fibrations *

We introduce in this paper the notions of noncommutative (shortly, NC) CW-complex, noncommutative Serre fibration and show that up to homo-topy, every NC CW-complex algebra morphism is some noncommutative Serre fibration. We then deduce a six-term exact sequence for the periodic cyclic homology and for K-theory of an arbitrary noncommutative Serre fi-bration, or of a morphism in the category of...

متن کامل

Generalized Serre duality

We introduce the generalized Serre functor S on a skeletally-small Hom-finite Krull-Schmidt triangulated category C. We prove that its domain Cr and range Cl are thick triangulated subcategories. Moreover, the subcategory Cr (resp. Cl) is the smallest additive subcategory containing all the objects in C which appears as the third term (resp. the first term) of some Aulsander-Reiten triangle in ...

متن کامل

Serre Duality and Applications

We carefully develop the theory of Serre duality and dualizing sheaves. We differ from the approach in [12] in that the use of spectral sequences and the Yoneda pairing are emphasized to put the proofs in a more systematic framework. As applications of the theory, we discuss the RiemannRoch theorem for curves and Bott’s theorem in representation theory (following [8]) using the algebraic-geomet...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Proceedings of the American Mathematical Society

سال: 1997

ISSN: 0002-9939,1088-6826

DOI: 10.1090/s0002-9939-97-03782-9